Journal Review #2

Image

 

“Snake Venom Protein Paralyses Cancer Cells”

 

According to an article read in the February 2013 issue of National Geographic magazine, titled “The Healing Power of Venom”  the infinite medicinal possibilities of venom proteins in treating debilitating diseases has  redefined the boundaries of where scientists go to search for such compounds. In fact, venom usage to treat afflictions has been documented in second century Sanskrit texts, indicative of the esteem it held amongst ‘healers’ both ancient and modern. Science is lending overwhelming credibility to the applications of venom, and this article inspired me to delve a bit deeper into the toxic world of venom; this journal review is based on research into the cancer fighting properties of snake venom proteins as elaborated on in an Oxford Journal publication.

Estimates tentatively reveal an astounding twenty million venom toxins waiting to be screened for medicinal properties; venom spread out all over the Animal Kingdom, including snakes, poisonous snails, gila monsters, arachnids, poisonous frogs amongst others. According to this journal (see reference below), a component of snake venom has been found to inhibit cancer cell mobility. Central to this discovery is the venom protein known as contortrostatin,extracted from the southern copperhead(Agkistrodon contortrix contortrix). It was found to be a disintegrin; these compounds are antagonistic to integrins which are transmembrane receptor proteins which bind extracellular matrix and provide a route for cellular migration. Cancer cells possess integrin proteins in their membranes, which enable migration upon tumour dissemination ; the primary integrin is αvβ3. Integrins are able to bind ligands that leads to ‘focal adhesion’ whereby ligand attachment signalling leads to clustering of the integrins at a particular site which then leads to extracellular matrix adhesion.

Contortrostatin was found to limit cellular migration by binding to integrin receptors and interfering with their ability to adhere to extracellular matrix. It also was inhibitory upon the extracellular proteins fibronectin and vitronectin, as well as limiting tumour cell migration, dissemination and angiogenesis(vessel formation which would provide circulatory attachment for the tumour). Signal disruption conveyed by contortrostatin was due to crosslinking of αvβ3 integrins, leading to defective focal adhesion and cytoskeleton manipulation.

As an aside, other potential venomic medicinal indications include the isolation of a peptide from the Eastern green mamba(one of the deadliest snakes in the world) known as cenderitide, which was found to have a  pharmacological basis in fibrosis reduction, blood pressure lowering and kidney shielding. Another is the compound extracted from Gila monsters known as exenatide which maintains blood sugar levels. A neurotoxin attained from the giant deathstalker scorpion has use in ‘tumour painting’ due its ability to attach to brain cancer cells, facilitating ease of identification of good cells from bad cells at a tumour’s growth edges.

Venom, viewed as grisly, pain –inducing, deadly substances, and perhaps rightly so, has however, found a niche in the treatment of debilitating diseases. The research into their potential and applications continues unabated, in light of their proven worth so far into various affliction remediation. Indeed, the molecular biology impetus behind the understanding of venom and its mechanism of action, as well as the chemical basis for isolation and modification of venom-derived compounds represents an exciting foray into the world of battling disease.

References:Finn, Robert. “Snake Venom Protein Paralyzes Cancer Cells” 2013. Accessed April 13th 2013. http://jnci.oxfordjournals.org/content/93/4/261.full

This entry was posted in Reviews. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s